| [90] |  Wyman, A.  and Zhang, Z.  (2025).  A tutorial on the use of artificial intelligence tools for facial emotion recognition in r. Multivariate Behavioral Research, 60(3), 641–655.  | 
| [89] |  Yuan, K.-H. and Zhang, Z.  (2025).  Parameterizing the lisrel model as a correlation structure model for more efficient parameter estimates and more powerful statistical tests. Structural Equation Modeling: A Multidisciplinary Journal, 32(3), 475–497.  | 
| [88] |  Zhang, L. , Qu, W.  and Zhang, Z.  (2025).  Bayesian growth curve modeling with measurement error in time. Multivariate Behavioral Research, 60(4), 748–766.  | 
| [87] |  Shao, S. (S. J. ), Xu, Z. , Liu, Q. , McClure, K. , Jacobucci, R. , Maxwell, S. E.  and Zhang, Z.  (2025).  Zero inflation in intensive longitudinal data: Why is it important and how should we deal with it?. Psychological Methods.  | 
| [86] |  Xu, Z.  and Zhang, Z.  (2025).  Structural equation models with social networks. Structural Equation Modeling: A Multidisciplinary Journal, 1–10.  | 
| [85] |  Wyman, A.  and Zhang, Z.  (2025).  Evaluating the threat of phantom faces in emotion detection ai through simulation. Journal of Behavioral Data Science, 5(2), 1–15.  | 
| [84] |  Xu, Z. , Gao, F. , Fa, A. , Qu, W.  and Zhang, Z.  (2024).  Statistical power analysis and sample size planning for moderated mediation models. Behavior Research Methods, 56(6), 6130–6149.  | 
| [83] |  Liu, X. , Zhang, Z.  and Wang, L.  (2024).  Detecting mediation effects with the bayes factor: Performance evaluation and tools for sample size determination. Psychological Methods.  | 
| [82] |  Liu, X. , Zhang, Z.  and Wang, L.  (2024).  Detecting mediation effects with the bayes factor: Performance evaluation and tools for sample size determination. Psychological Methods.  | 
| [81] |  Yuan, K.-H., Ling, L.  and Zhang, Z.  (2024).  Scale-invariance, equivariance and dependency of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 31(6), 1027–1042.  | 
| [80] |  Yuan, K.-H. and Zhang, Z.  (2024).  Modeling data with measurement errors but without predefined metrics: Fact versus fallacy. Journal of Behavioral Data Science, 4(2), 1–28.  | 
| [79] |  Yuan, K.-H., Zhang, Z.  and Wang, L.  (2024).  Signal-to-noise ratio in estimating and testing the mediation effect: Structural equation modeling versus path analysis with weighted composites. Psychometrika, 89(3), 974–1006.  | 
| [78] |  Liu, X. , Zhang, Z. , Valentino, K.  and Wang, L.  (2023).  The impact of omitting confounders in parallel process latent growth curve mediation models: Three sensitivity analysis approaches. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 132–150.  | 
| [77] |  Zhao, S. , Zhang, Z.  and Zhang, H.  (2023).  Bayesian inference of dynamic mediation models for longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 14–26.  | 
| [76] |  Wyman, A.  and Zhang, Z.  (2023).  Api face value: Evaluating the current status and potential of emotion detection software in emotional deficit interventions. Journal of Behavioral Data Science, 3(1), 1–11.  | 
| [75] |  Wilcox, K. T. , Jacobucci, R. , Zhang, Z.  and Ammerman, B. A.  (2023).  Supervised latent dirichlet allocation with covariates: A bayesian structural and measurement model of text and covariates. Psychological Methods, 28(5), 1178–1206.  | 
| [74] |  Zhang, L. , Li, X.  and Zhang, Z.  (2023).  Variety and mainstays of the r developer community. The R Journal, 15(3), 5–25.  | 
| [73] |  Xu, Z. , Hai, J. , Yang, Y.  and Zhang, Z.  (2022).  Comparison of methods for imputing social network data. Journal of Data Science, 599–618.  | 
| [72] |  Liu, X. , Zhang, Z.  and Wang, L.  (2022).  Bayesian hypothesis testing of mediation: Methods and the impact of prior odds specifications. Behavior Research Methods, 55(3), 1108–1120.  | 
| [71] |  Lu, L.  and Zhang, Z.  (2022).  How to select the best fit model among bayesian latent growth models for complex data. Journal of Behavioral Data Science, 2(1), 35–58.  | 
| [70] |  Mai, Y. , Xu, Z. , Zhang, Z.  and Yuan, K.-H. (2022).  An open-source wysiwyg web application for drawing path diagrams of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 328–335.  | 
| [69] |  Liu, H. , Qu, W. , Zhang, Z.  and Wu, H.  (2022).  A new bayesian structural equation modeling approach with priors on the covariance matrix parameter. Journal of Behavioral Data Science, 2(2), 1–24.  | 
| [68] |  Zhang, Z.  (2021).  A note on wishart and inverse wishart priors for covariance matrix. Journal of Behavioral Data Science, 1(2).  | 
| [67] |  Liu, H. , Jin, I. H. , Zhang, Z.  and Yuan, Y.  (2021).  Social network mediation analysis: A latent space approach. Psychometrika, 86(1), 272–298.  | 
| [66] |  Lu, Z.  and Zhang, Z.  (2021).  Bayesian approach to non-ignorable missingness in latent growth models. Journal of Behavioral Data Science, 1(2), 1–30.  | 
| [65] |  Zhang, Z.  and Zhang, D.  (2021).  What is data science? An operational definition based on text mining of data science curricula. Journal of Behavioral Data Science, 1(1), 1–16.  | 
| [64] |  Liu, H.  and Zhang, Z.  (2021).  Birds of a feather flock together and opposites attract: The nonlinear relationship between personality and friendship. Journal of Behavioral Data Science, 1(1), 34–52.  | 
| [63] |  Krettenauer, T. , Lefebvre, J. P. , Hardy, S. A. , Zhang, Z.  and Cazzell, A. R.  (2021).  Daily moral identity: Linkages with integrity and compassion. Journal of Personality, 90(5), 663–674.  | 
| [62] |  Kuang, Y. , Zhang, Z. J. , Duan, B.  and Zhang, P.  (2020).  Fuzzy cognitive maps-based switched-mode power supply design assistant system. IEEE Access, 8, 183014–183024.  | 
| [61] |  Che, C. , Jin, I. H.  and Zhang, Z.  (2020).  Network mediation analysis using model-based eigenvalue decomposition. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 148–161.  | 
| [60] |  Yuan, K.-H., Zhang, Z.  and Deng, L.  (2019).  Fit indices for mean structures with growth curve models. Psychological Methods, 24(1), 36–53.  | 
| [59] |  Du, H. , Edwards, M. C.  and Zhang, Z.  (2019).  Bayes factor in one-sample tests of means with a sensitivity analysis: A discussion of separate prior distributions. Behavior Research Methods, 51(5), 1998–2021.  | 
| [58] |  Qu, W. , Liu, H.  and Zhang, Z.  (2019).  A method of generating multivariate non-normal random numbers with desired multivariate skewness and kurtosis. Behavior Research Methods, 52(3), 939–946.  | 
| [57] |  Tong, X.  and Zhang, Z.  (2019).  Robust bayesian approaches in growth curve modeling: Using student’stdistributions versus a semiparametric method. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 544–560.  | 
| [56] |  Wilcox, K. T. , Jacobucci, R.  and Zhang, Z.  (2019).  Bayesian supervised topic modeling with covariates. Multivariate Behavioral Research, 55(1), 141–141.  | 
| [55] |  Mai, Y.  and Zhang, Z.  (2018).  Software packages for bayesian multilevel modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 650–658.  | 
| [54] |  Mai, Y. , Zhang, Z.  and Wen, Z.  (2018).  Comparing exploratory structural equation modeling and existing approaches for multiple regression with latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 737–749.  | 
| [53] |  Zhang, Z.  (2018).  A review of bayesian psychometric modeling. Journal of Educational and Behavioral Statistics, 43(4), 502–505.  | 
| [52] |  Cain, M. K.  and Zhang, Z.  (2018).  Fit for a bayesian: An evaluation of ppp and dic for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 39–50.  | 
| [51] |  Liu, H. , Jin, I. H.  and Zhang, Z.  (2018).  Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research, 53(5), 714–730.  | 
| [50] |  Serang, S. , Grimm, K. J.  and Zhang, Z.  (2018).  On the correspondence between the latent growth curve and latent change score models. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 623–635.  | 
| [49] |  Zhang, Z. , Jiang, K. , Liu, H.  and Oh, I.-S. (2017).  Bayesian meta-analysis of correlation coefficients through power prior. Communications in Statistics - Theory and Methods, 46(24), 11988–12007.  | 
| [48] |  Yuan, K.-H., Zhang, Z.  and Zhao, Y.  (2017).  Reliable and more powerful methods for power analysis in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 315–330.  | 
| [47] |  Liu, H.  and Zhang, Z.  (2017).  Logistic regression with misclassification in binary outcome variables: A method and software. Behaviormetrika, 44(2), 447–476.  | 
| [46] |  Ke, Z.  and Zhang, Z. (J. ) (2017).  Testing autocorrelation and partial autocorrelation: Asymptotic methods versus resampling techniques. British Journal of Mathematical and Statistical Psychology, 71(1), 96–116.  | 
| [45] |  Tong, X.  and Zhang, Z.  (2017).  Outlying observation diagnostics in growth curve modeling. Multivariate Behavioral Research, 52(6), 768–788.  | 
| [44] |  Cain, M. K. , Zhang, Z.  and Bergeman, C. S.  (2017).  Time and other considerations in mediation design. Educational and Psychological Measurement, 78(6), 952–972.  | 
| [43] |  Cain, M. K. , Zhang, Z.  and Yuan, K.-H. (2016).  Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716–1735.  | 
| [42] |  Zhang, Z.  (2015).  Modeling error distributions of growth curve models through bayesian methods. Behavior Research Methods, 48(2), 427–444.  | 
| [41] |  Zhang, Z.  and Yuan, K.-H. (2015).  Robust coefficients alpha and omega and confidence intervals with outlying observations and missing data: Methods and software. Educational and Psychological Measurement, 76(3), 387–411.  | 
| [40] |  Merluzzi, T. V. , Philip, E. J. , Zhang, Z.  and Sullivan, C.  (2015).  Perceived discrimination, coping, and quality of life for african-american and caucasian persons with cancer. Cultural Diversity & Ethnic Minority Psychology, 21(3), 337–344.  | 
| [39] |  Liu, H. , Zhang, Z.  and Grimm, K. J.  (2015).  Comparison of inverse wishart and separation-strategy priors for bayesian estimation of covariance parameter matrix in growth curve analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 354–367.  | 
| [38] |  Cheung, R. Y. M. , Cummings, E. M. , Zhang, Z.  and Davies, P. T.  (2015).  Trivariate modeling of interparental conflict and adolescent emotional security: An examination of mother–father–child dynamics. Journal of Youth and Adolescence, 45(11), 2336–2352.  | 
| [37] |  Zhang, Z.  (2014).  Webbugs: Conducting bayesian statistical analysis online. Journal of Statistical Software, 61(7).  | 
| [36] |  Song, H.  and Zhang, Z.  (2014).  Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67–77.  | 
| [35] |  Lu, Z. (L. ) and Zhang, Z.  (2014).  Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application. Computational Statistics & Data Analysis, 71, 220–240.  | 
| [34] |  Tong, X.  and Zhang, Z.  (2014).  Abstract: Semiparametric bayesian modeling with application in growth curve analysis. Multivariate Behavioral Research, 49(3), 299–299.  | 
| [33] |  Tong, X. , Zhang, Z.  and Yuan, K.-H. (2014).  Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Structural Equation Modeling: A Multidisciplinary Journal, 21(4), 553–565.  | 
| [32] |  Yuan, K.-H., Tong, X.  and Zhang, Z.  (2014).  Bias and efficiency for sem with missing data and auxiliary variables: Two-stage robust method versus two-stage ml. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 178–192.  | 
| [31] |  Zhang, Z. , Hamagami, F. , Grimm, K. J.  and McArdle, J. J.  (2014).  Using r package rampath for tracing sem path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 132–147.  | 
| [30] |  Bernard, K. , Peloso, E. , Laurenceau, J. ‐P. , Zhang, Z.  and Dozier, M.  (2014).  Examining change in cortisol patterns during the 10‐week transition to a new child‐care setting. Child Development, 86(2), 456–471.  | 
| [29] |  Hardy, S. A. , Zhang, Z. , Skalski, J. E. , Melling, B. S.  and Brinton, C. T.  (2014).  Daily religious involvement, spirituality, and moral emotions. Psychology of Religion and Spirituality, 6(4), 338–348.  | 
| [28] |  Serang, S. , Zhang, Z. , Helm, J. , Steele, J. S.  and Grimm, K. J.  (2014).  Evaluation of a bayesian approach to estimating nonlinear mixed-effects mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 202–215.  | 
| [27] |  Grimm, K. , Zhang, Z. , Hamagami, F.  and Mazzocco, M.  (2013).  Modeling nonlinear change via latent change and latent acceleration frameworks: Examining velocity and acceleration of growth trajectories. Multivariate Behavioral Research, 48(1), 117–143.  | 
| [26] |  Zhang, Z. , Lai, K. , Lu, Z.  and Tong, X.  (2013).  Bayesian inference and application of robust growth curve models using student’stdistribution. Structural Equation Modeling: A Multidisciplinary Journal, 20(1), 47–78.  | 
| [25] |  Zhang, Z.  and Wang, L.  (2013).  Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184.  | 
| [24] |  Grimm, K. J. , Kuhl, A. P.  and Zhang, Z.  (2013).  Measurement models, estimation, and the study of change. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 504–517.  | 
| [23] |  Zhang, Z.  (2013).  Bayesian growth curve models with the generalized error distribution. Journal of Applied Statistics, 40(8), 1779–1795.  | 
| [22] |  Zhang, Z.  (2013).  Monte carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46(4), 1184–1198.  | 
| [21] |  Philip, E. J. , Merluzzi, T. V. , Zhang, Z.  and Heitzmann, C. A.  (2012).  Depression and cancer survivorship: Importance of coping self‐efficacy in post‐treatment survivors. Psycho-Oncology, 22(5), 987–994.  | 
| [20] |  Zhang, Z. , McArdle, J. J.  and Nesselroade, J. R.  (2012).  Growth rate models: Emphasizing growth rate analysis through growth curve modeling. Journal of Applied Statistics, 39(6), 1241–1262.  | 
| [19] |  Tong, X.  and Zhang, Z.  (2012).  Diagnostics of robust growth curve modeling using student’stdistribution. Multivariate Behavioral Research, 47(4), 493–518.  | 
| [18] |  Zhang, Z.  and Wang, L.  (2012).  A note on the robustness of a full bayesian method for nonignorable missing data analysis. Brazilian Journal of Probability and Statistics, 26(3).  | 
| [17] |  Yuan, K.-H. and Zhang, Z.  (2012).  Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77(4), 803–826.  | 
| [16] |  Yuan, K.-H. and Zhang, Z.  (2012).  Structural equation modeling diagnostics using r package semdiag and eqs. Structural Equation Modeling: A Multidisciplinary Journal, 19(4), 683–702.  | 
| [15] |  Wang, L.  and Zhang, Z.  (2011).  Estimating and testing mediation effects with censored data. Structural Equation Modeling: A Multidisciplinary Journal, 18(1), 18–34.  | 
| [14] |  Lu, Z. L. , Zhang, Z.  and Lubke, G.  (2011).  Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46(4), 567–597.  | 
| [13] |  Hardy, S. A. , White, J. A. , Zhang, Z.  and Ruchty, J.  (2011).  Parenting and the socialization of religiousness and spirituality. Psychology of Religion and Spirituality, 3(3), 217–230.  | 
| [12] |  Zhang, Z. , Browne, M. W.  and Nesselroade, J. R.  (2011).  Higher-order factor invariance and idiographic mapping of constructs to observables. Applied Developmental Science, 15(4), 186–200.  | 
| [11] |  Tong, X. , Zhang, Z.  and Yuan, K.-H. (2011).  Abstract: Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Multivariate Behavioral Research, 46(6), 1016–1016.  | 
| [10] |  Lu, Z. L. , Zhang, Z. J.  and Lubke, G.  (2010).  Abstract: Bayesian inference for growth mixture models with nonignorable missing data. Multivariate Behavioral Research, 45(6), 1028–1029.  | 
| [9] |  Winter, W. C. , Hammond, W. R. , Green, N. H. , Zhang, Z.  and Bliwise, D. L.  (2009).  Measuring circadian advantage in major league baseball: A 10-year retrospective study. International Journal of Sports Physiology and Performance, 4(3), 394–401.  | 
| [8] |  Zhang, Z.  and Wang, L.  (2009).  Statistical power analysis for growth curve models using sas. Behavior Research Methods, 41(4), 1083–1094.  | 
| [7] |  Hamaker, E. L. , Zhang, Z.  and van der Maas, H. L. J.  (2009).  Using threshold autoregressive models to study dyadic interactions. Psychometrika, 74(4), 727–745.  | 
| [6] |  Zhang, Z. , Hamaker, E. L.  and Nesselroade, J. R.  (2008).  Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling: A Multidisciplinary Journal, 15(3), 377–402.  | 
| [5] |  Wang, L. , Zhang, Z. , McArdle, J. J.  and Salthouse, T. A.  (2008).  Investigating ceiling effects in longitudinal data analysis. Multivariate Behavioral Research, 43(3), 476–496.  | 
| [4] |  Zhang, Z. , McArdle, J. J. , Wang, L.  and Hamagami, F.  (2008).  A sas interface for bayesian analysis with winbugs. Structural Equation Modeling: A Multidisciplinary Journal, 15(4), 705–728.  | 
| [3] |  Zhang, Z. , Davis, H. P. , Salthouse, T. A.  and Tucker-Drob, E. M.  (2007).  Correlates of individual, and age-related, differences in short-term learning. Learning and Individual Differences, 17(3), 231–240.  | 
| [2] |  Zhang, Z. , Hamagami, F. , Lijuan Wang, L. , Nesselroade, J. R.  and Grimm, K. J.  (2007).  Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31(4), 374–383.  | 
| [1] |  Zhang, Z.  and Nesselroade, J. R.  (2007).  Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729–756.  |