[85] | Yuan, K.-H. and Zhang, Z. (2025). Parameterizing the lisrel model as a correlation structure model for more efficient parameter estimates and more powerful statistical tests. Structural Equation Modeling: A Multidisciplinary Journal, 1–23. |
[84] | Wyman, A. and Zhang, Z. (2025). A tutorial on the use of artificial intelligence tools for facial emotion recognition in r. Multivariate Behavioral Research, 1–15. |
[83] | Xu, Z. , Gao, F. , Fa, A. , Qu, W. and Zhang, Z. (2024). Statistical power analysis and sample size planning for moderated mediation models. Behavior Research Methods, 56(6), 6130–6149. |
[82] | Liu, X. , Zhang, Z. and Wang, L. (2024). Detecting mediation effects with the bayes factor: Performance evaluation and tools for sample size determination. Psychological Methods. |
[81] | Yuan, K.-H., Ling, L. and Zhang, Z. (2024). Scale-invariance, equivariance and dependency of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 31(6), 1027–1042. |
[80] | Yuan, K.-H. and Zhang, Z. (2024). Modeling data with measurement errors but without predefined metrics: Fact versus fallacy. Journal of Behavioral Data Science, 4(2), 1–28. |
[79] | Yuan, K.-H., Zhang, Z. and Wang, L. (2024). Signal-to-noise ratio in estimating and testing the mediation effect: Structural equation modeling versus path analysis with weighted composites. Psychometrika, 89(3), 974–1006. |
[78] | Liu, X. , Zhang, Z. , Valentino, K. and Wang, L. (2023). The impact of omitting confounders in parallel process latent growth curve mediation models: Three sensitivity analysis approaches. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 132–150. |
[77] | Zhao, S. , Zhang, Z. and Zhang, H. (2023). Bayesian inference of dynamic mediation models for longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 31(1), 14–26. |
[76] | Wyman, A. and Zhang, Z. (2023). Api face value: Evaluating the current status and potential of emotion detection software in emotional deficit interventions. Journal of Behavioral Data Science, 3(1), 1–11. |
[75] | Wilcox, K. T. , Jacobucci, R. , Zhang, Z. and Ammerman, B. A. (2023). Supervised latent dirichlet allocation with covariates: A bayesian structural and measurement model of text and covariates. Psychological Methods, 28(5), 1178–1206. |
[74] | Zhang, L. , Li, X. and Zhang, Z. (2023). Variety and mainstays of the r developer community. The R Journal, 15(3), 5–25. |
[73] | Xu, Z. , Hai, J. , Yang, Y. and Zhang, Z. (2022). Comparison of methods for imputing social network data. Journal of Data Science, 599–618. |
[72] | Liu, X. , Zhang, Z. and Wang, L. (2022). Bayesian hypothesis testing of mediation: Methods and the impact of prior odds specifications. Behavior Research Methods, 55(3), 1108–1120. |
[71] | Lu, L. and Zhang, Z. (2022). How to select the best fit model among bayesian latent growth models for complex data. Journal of Behavioral Data Science, 2(1), 35–58. |
[70] | Mai, Y. , Xu, Z. , Zhang, Z. and Yuan, K.-H. (2022). An open-source wysiwyg web application for drawing path diagrams of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 328–335. |
[69] | Liu, H. , Qu, W. , Zhang, Z. and Wu, H. (2022). A new bayesian structural equation modeling approach with priors on the covariance matrix parameter. Journal of Behavioral Data Science, 2(2), 1–24. |
[68] | Zhang, Z. (2021). A note on wishart and inverse wishart priors for covariance matrix. Journal of Behavioral Data Science, 1(2). |
[67] | Liu, H. , Jin, I. H. , Zhang, Z. and Yuan, Y. (2021). Social network mediation analysis: A latent space approach. Psychometrika, 86(1), 272–298. |
[66] | Lu, Z. and Zhang, Z. (2021). Bayesian approach to non-ignorable missingness in latent growth models. Journal of Behavioral Data Science, 1(2), 1–30. |
[65] | Zhang, Z. and Zhang, D. (2021). What is data science? An operational definition based on text mining of data science curricula. Journal of Behavioral Data Science, 1(1), 1–16. |
[64] | Liu, H. and Zhang, Z. (2021). Birds of a feather flock together and opposites attract: The nonlinear relationship between personality and friendship. Journal of Behavioral Data Science, 1(1), 34–52. |
[63] | Krettenauer, T. , Lefebvre, J. P. , Hardy, S. A. , Zhang, Z. and Cazzell, A. R. (2021). Daily moral identity: Linkages with integrity and compassion. Journal of Personality, 90(5), 663–674. |
[62] | Kuang, Y. , Zhang, Z. J. , Duan, B. and Zhang, P. (2020). Fuzzy cognitive maps-based switched-mode power supply design assistant system. IEEE Access, 8, 183014–183024. |
[61] | Che, C. , Jin, I. H. and Zhang, Z. (2020). Network mediation analysis using model-based eigenvalue decomposition. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 148–161. |
[60] | Yuan, K.-H., Zhang, Z. and Deng, L. (2019). Fit indices for mean structures with growth curve models. Psychological Methods, 24(1), 36–53. |
[59] | Du, H. , Edwards, M. C. and Zhang, Z. (2019). Bayes factor in one-sample tests of means with a sensitivity analysis: A discussion of separate prior distributions. Behavior Research Methods, 51(5), 1998–2021. |
[58] | Qu, W. , Liu, H. and Zhang, Z. (2019). A method of generating multivariate non-normal random numbers with desired multivariate skewness and kurtosis. Behavior Research Methods, 52(3), 939–946. |
[57] | Tong, X. and Zhang, Z. (2019). Robust bayesian approaches in growth curve modeling: Using student’stdistributions versus a semiparametric method. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 544–560. |
[56] | Wilcox, K. T. , Jacobucci, R. and Zhang, Z. (2019). Bayesian supervised topic modeling with covariates. Multivariate Behavioral Research, 55(1), 141–141. |
[55] | Mai, Y. and Zhang, Z. (2018). Software packages for bayesian multilevel modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 650–658. |
[54] | Mai, Y. , Zhang, Z. and Wen, Z. (2018). Comparing exploratory structural equation modeling and existing approaches for multiple regression with latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 737–749. |
[53] | Zhang, Z. (2018). A review of bayesian psychometric modeling. Journal of Educational and Behavioral Statistics, 43(4), 502–505. |
[52] | Cain, M. K. and Zhang, Z. (2018). Fit for a bayesian: An evaluation of ppp and dic for structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 39–50. |
[51] | Liu, H. , Jin, I. H. and Zhang, Z. (2018). Structural equation modeling of social networks: Specification, estimation, and application. Multivariate Behavioral Research, 53(5), 714–730. |
[50] | Serang, S. , Grimm, K. J. and Zhang, Z. (2018). On the correspondence between the latent growth curve and latent change score models. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 623–635. |
[49] | Zhang, Z. , Jiang, K. , Liu, H. and Oh, I.-S. (2017). Bayesian meta-analysis of correlation coefficients through power prior. Communications in Statistics - Theory and Methods, 46(24), 11988–12007. |
[48] | Yuan, K.-H., Zhang, Z. and Zhao, Y. (2017). Reliable and more powerful methods for power analysis in structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 315–330. |
[47] | Liu, H. and Zhang, Z. (2017). Logistic regression with misclassification in binary outcome variables: A method and software. Behaviormetrika, 44(2), 447–476. |
[46] | Ke, Z. and Zhang, Z. (J. ) (2017). Testing autocorrelation and partial autocorrelation: Asymptotic methods versus resampling techniques. British Journal of Mathematical and Statistical Psychology, 71(1), 96–116. |
[45] | Tong, X. and Zhang, Z. (2017). Outlying observation diagnostics in growth curve modeling. Multivariate Behavioral Research, 52(6), 768–788. |
[44] | Cain, M. K. , Zhang, Z. and Bergeman, C. S. (2017). Time and other considerations in mediation design. Educational and Psychological Measurement, 78(6), 952–972. |
[43] | Cain, M. K. , Zhang, Z. and Yuan, K.-H. (2016). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716–1735. |
[42] | Zhang, Z. (2015). Modeling error distributions of growth curve models through bayesian methods. Behavior Research Methods, 48(2), 427–444. |
[41] | Zhang, Z. and Yuan, K.-H. (2015). Robust coefficients alpha and omega and confidence intervals with outlying observations and missing data: Methods and software. Educational and Psychological Measurement, 76(3), 387–411. |
[40] | Merluzzi, T. V. , Philip, E. J. , Zhang, Z. and Sullivan, C. (2015). Perceived discrimination, coping, and quality of life for african-american and caucasian persons with cancer. Cultural Diversity & Ethnic Minority Psychology, 21(3), 337–344. |
[39] | Liu, H. , Zhang, Z. and Grimm, K. J. (2015). Comparison of inverse wishart and separation-strategy priors for bayesian estimation of covariance parameter matrix in growth curve analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 354–367. |
[38] | Cheung, R. Y. M. , Cummings, E. M. , Zhang, Z. and Davies, P. T. (2015). Trivariate modeling of interparental conflict and adolescent emotional security: An examination of mother–father–child dynamics. Journal of Youth and Adolescence, 45(11), 2336–2352. |
[37] | Zhang, Z. (2014). Webbugs: Conducting bayesian statistical analysis online. Journal of Statistical Software, 61(7). |
[36] | Song, H. and Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67–77. |
[35] | Lu, Z. (L. ) and Zhang, Z. (2014). Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application. Computational Statistics & Data Analysis, 71, 220–240. |
[34] | Tong, X. and Zhang, Z. (2014). Abstract: Semiparametric bayesian modeling with application in growth curve analysis. Multivariate Behavioral Research, 49(3), 299–299. |
[33] | Tong, X. , Zhang, Z. and Yuan, K.-H. (2014). Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Structural Equation Modeling: A Multidisciplinary Journal, 21(4), 553–565. |
[32] | Yuan, K.-H., Tong, X. and Zhang, Z. (2014). Bias and efficiency for sem with missing data and auxiliary variables: Two-stage robust method versus two-stage ml. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 178–192. |
[31] | Zhang, Z. , Hamagami, F. , Grimm, K. J. and McArdle, J. J. (2014). Using r package rampath for tracing sem path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 132–147. |
[30] | Bernard, K. , Peloso, E. , Laurenceau, J. ‐P. , Zhang, Z. and Dozier, M. (2014). Examining change in cortisol patterns during the 10‐week transition to a new child‐care setting. Child Development, 86(2), 456–471. |
[29] | Hardy, S. A. , Zhang, Z. , Skalski, J. E. , Melling, B. S. and Brinton, C. T. (2014). Daily religious involvement, spirituality, and moral emotions. Psychology of Religion and Spirituality, 6(4), 338–348. |
[28] | Serang, S. , Zhang, Z. , Helm, J. , Steele, J. S. and Grimm, K. J. (2014). Evaluation of a bayesian approach to estimating nonlinear mixed-effects mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 202–215. |
[27] | Grimm, K. , Zhang, Z. , Hamagami, F. and Mazzocco, M. (2013). Modeling nonlinear change via latent change and latent acceleration frameworks: Examining velocity and acceleration of growth trajectories. Multivariate Behavioral Research, 48(1), 117–143. |
[26] | Zhang, Z. , Lai, K. , Lu, Z. and Tong, X. (2013). Bayesian inference and application of robust growth curve models using student’stdistribution. Structural Equation Modeling: A Multidisciplinary Journal, 20(1), 47–78. |
[25] | Zhang, Z. and Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184. |
[24] | Grimm, K. J. , Kuhl, A. P. and Zhang, Z. (2013). Measurement models, estimation, and the study of change. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 504–517. |
[23] | Zhang, Z. (2013). Bayesian growth curve models with the generalized error distribution. Journal of Applied Statistics, 40(8), 1779–1795. |
[22] | Zhang, Z. (2013). Monte carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46(4), 1184–1198. |
[21] | Philip, E. J. , Merluzzi, T. V. , Zhang, Z. and Heitzmann, C. A. (2012). Depression and cancer survivorship: Importance of coping self‐efficacy in post‐treatment survivors. Psycho-Oncology, 22(5), 987–994. |
[20] | Zhang, Z. , McArdle, J. J. and Nesselroade, J. R. (2012). Growth rate models: Emphasizing growth rate analysis through growth curve modeling. Journal of Applied Statistics, 39(6), 1241–1262. |
[19] | Tong, X. and Zhang, Z. (2012). Diagnostics of robust growth curve modeling using student’stdistribution. Multivariate Behavioral Research, 47(4), 493–518. |
[18] | Zhang, Z. and Wang, L. (2012). A note on the robustness of a full bayesian method for nonignorable missing data analysis. Brazilian Journal of Probability and Statistics, 26(3). |
[17] | Yuan, K.-H. and Zhang, Z. (2012). Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77(4), 803–826. |
[16] | Yuan, K.-H. and Zhang, Z. (2012). Structural equation modeling diagnostics using r package semdiag and eqs. Structural Equation Modeling: A Multidisciplinary Journal, 19(4), 683–702. |
[15] | Wang, L. and Zhang, Z. (2011). Estimating and testing mediation effects with censored data. Structural Equation Modeling: A Multidisciplinary Journal, 18(1), 18–34. |
[14] | Lu, Z. L. , Zhang, Z. and Lubke, G. (2011). Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46(4), 567–597. |
[13] | Hardy, S. A. , White, J. A. , Zhang, Z. and Ruchty, J. (2011). Parenting and the socialization of religiousness and spirituality. Psychology of Religion and Spirituality, 3(3), 217–230. |
[12] | Zhang, Z. , Browne, M. W. and Nesselroade, J. R. (2011). Higher-order factor invariance and idiographic mapping of constructs to observables. Applied Developmental Science, 15(4), 186–200. |
[11] | Tong, X. , Zhang, Z. and Yuan, K.-H. (2011). Abstract: Evaluation of test statistics for robust structural equation modeling with nonnormal missing data. Multivariate Behavioral Research, 46(6), 1016–1016. |
[10] | Lu, Z. L. , Zhang, Z. J. and Lubke, G. (2010). Abstract: Bayesian inference for growth mixture models with nonignorable missing data. Multivariate Behavioral Research, 45(6), 1028–1029. |
[9] | Winter, W. C. , Hammond, W. R. , Green, N. H. , Zhang, Z. and Bliwise, D. L. (2009). Measuring circadian advantage in major league baseball: A 10-year retrospective study. International Journal of Sports Physiology and Performance, 4(3), 394–401. |
[8] | Zhang, Z. and Wang, L. (2009). Statistical power analysis for growth curve models using sas. Behavior Research Methods, 41(4), 1083–1094. |
[7] | Hamaker, E. L. , Zhang, Z. and van der Maas, H. L. J. (2009). Using threshold autoregressive models to study dyadic interactions. Psychometrika, 74(4), 727–745. |
[6] | Zhang, Z. , Hamaker, E. L. and Nesselroade, J. R. (2008). Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling: A Multidisciplinary Journal, 15(3), 377–402. |
[5] | Wang, L. , Zhang, Z. , McArdle, J. J. and Salthouse, T. A. (2008). Investigating ceiling effects in longitudinal data analysis. Multivariate Behavioral Research, 43(3), 476–496. |
[4] | Zhang, Z. , McArdle, J. J. , Wang, L. and Hamagami, F. (2008). A sas interface for bayesian analysis with winbugs. Structural Equation Modeling: A Multidisciplinary Journal, 15(4), 705–728. |
[3] | Zhang, Z. , Davis, H. P. , Salthouse, T. A. and Tucker-Drob, E. M. (2007). Correlates of individual, and age-related, differences in short-term learning. Learning and Individual Differences, 17(3), 231–240. |
[2] | Zhang, Z. , Hamagami, F. , Lijuan Wang, L. , Nesselroade, J. R. and Grimm, K. J. (2007). Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31(4), 374–383. |
[1] | Zhang, Z. and Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729–756. |